skip to main content


Search for: All records

Creators/Authors contains: "Andersson, Andreas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    There is growing concern about the effects of ocean acidification (OA) on coral reefs, with many studies indicating decreasing calcium carbonate production and reef growth. However, to accurately predict how coral reefs will respond to OA, it is necessary to characterize natural carbonate chemistry conditions, including the spatiotemporal mean and variability and the physical and biogeochemical drivers across different environments. In this study, spatial and temporal physiochemical variability was characterized at two contrasting reef locations in Bocas del Toro, Panama, that differed in their benthic community composition, reef morphology, and exposure to open ocean conditions, using a combination of approaches including autonomous sensors and spatial surveys during November 2015. Mean and diurnal temporal variability in both physical and chemical seawater parameters were similar between sites and sampling depths, but with occasional differences in extreme values. The magnitude of spatial variability was different between the two sites, which reflected the cumulative effect from terrestrial runoff and benthic metabolism. Based on graphical vector analysis of TA–DIC data, reef metabolism was dominated by organic over inorganic carbon cycling at both sites, with net heterotrophy and net calcium carbonate dissolution dominating the majority of observations. The results also highlight the potentially strong influence of terrestrial freshwater runoff on surface seawater conditions, and the challenges associated with evaluating and characterizing this influence on benthic habitats. The Bocas del Toro reef is a unique system that deserves attention to better understand the mechanisms that allow corals and coral reefs to persist under increasingly challenging environmental conditions.

     
    more » « less
  2. Abstract

    Coastal upwelling regions are among the most productive marine ecosystems but may be threatened by amplified ocean acidification. Increased acidification is hypothesized to reduce iron bioavailability for phytoplankton thereby expanding iron limitation and impacting primary production. Here we show from community to molecular levels that phytoplankton in an upwelling region respond to short-term acidification exposure with iron uptake pathways and strategies that reduce cellular iron demand. A combined physiological and multi-omics approach was applied to trace metal clean incubations that introduced 1200 ppm CO2for up to four days.Although variable, molecular-level responses indicate a prioritization of iron uptake pathways that are less hindered by acidification and reductions in iron utilization. Growth, nutrient uptake, and community compositions remained largely unaffected suggesting that these mechanisms may confer short-term resistance to acidification; however, we speculate that cellular iron demand is only temporarily satisfied, and longer-term acidification exposure without increased iron inputs may result in increased iron stress.

     
    more » « less
  3. Abstract The California Current System experiences seasonal ocean acidification and hypoxia (OAH) owing to wind-driven upwelling, but little is known about the intensity, frequency, and depth distribution of OAH in the shallow nearshore environment. Here we present observations of OAH and dissolved inorganic carbon and nutrient parameters based on monthly transects from March 2017 to September 2018 extending from the surf zone to the ~ 40 m depth contour in La Jolla, California. Biologically concerning OAH conditions were observed at depths as shallow as 10 m and as close as 700 m to the shoreline. Below 20 m depth, 8% of observations were undersaturated with respect to aragonite, 28% of observations had a pH T less than 7.85, and 19% of observations were below the sublethal oxygen threshold of 157 µmol kg −1 . These observations raise important questions about the impacts of OAH on coastal organisms and ecosystems and how future intensified upwelling may exacerbate these conditions. 
    more » « less
  4. Caroselli, Erik (Ed.)
    The North Atlantic Oscillation (NAO) has been hypothesized to drive interannual variability in Bermudan coral extension rates and reef-scale calcification through the provisioning of nutritional pulses associated with negative NAO winters. However, the direct influence of the NAO on Bermudan coral calcification rates remains to be determined and may vary between species and reef sites owing to implicit differences in coral life history strategies and environmental gradients across the Bermuda reef platform. In this study, we investigated the connection between negative NAO winters and Bermudan Diploria labyrinthiformis , Pseudodiploria strigosa , and Orbicella franksi coral calcification rates across rim reef, lagoon, and nearshore reef sites. Linear mixed effects modeling detected an inverse correlation between D . labyrinthiformis calcification rates and the winter NAO index, with higher rates associated with increasingly negative NAO winters. Conversely, there were no detectable correlations between P . strigosa or O . franksi calcification rates and the winter NAO index suggesting that coral calcification responses associated with negative NAO winters could be species-specific. The correlation between coral calcification rates and winter NAO index was significantly more negative at the outer rim of the reef (Hog Reef) compared to a nearshore reef site (Whalebone Bay), possibly indicating differential influence of the NAO as a function of the distance from the reef edge. Furthermore, a negative calcification anomaly was observed in 100% of D . labyrinthiformis cores in association with the 1988 coral bleaching event with a subsequent positive calcification anomaly in 1989 indicating a post-bleaching recovery in calcification rates. These results highlight the importance of assessing variable interannual coral calcification responses between species and across inshore-offshore gradients to interannual atmospheric modes such as the NAO, thermal stress events, and potential interactions between ocean warming and availability of coral nutrition to improve projections for future coral calcification rates under climate change. 
    more » « less
  5. null (Ed.)
    Spatial and temporal carbonate chemistry variability on coral reefs is influenced by a combination of seawater hydrodynamics, geomorphology, and biogeochemical processes, though their relative influence varies by site. It is often assumed that the water column above most reefs is well-mixed with small to no gradients outside of the benthic boundary layer. However, few studies to date have explored the processes and properties controlling these multi-dimensional gradients. Here, we investigated the lateral, vertical, and temporal variability of seawater carbonate chemistry on a Bermudan rim reef using a combination of spatial seawater chemistry surveys and autonomous in situ sensors. Instruments were deployed at Hog Reef measuring current flow, seawater temperature, salinity, pH T , p CO 2 , dissolved oxygen (DO), and total alkalinity (TA) on the benthos, and temperature, salinity, DO, and p CO 2 at the surface. Water samples from spatial surveys were collected from surface and bottom depths at 13 stations covering ∼3 km 2 across 4 days. High frequency temporal variability in carbonate chemistry was driven by a combination of diel light and mixed semi-diurnal tidal cycles on the reef. Daytime gradients in DO between the surface and the benthos suggested significant water column production contributing to distinct diel trends in pH T , p CO 2 , and DO, but not TA. We hypothesize these differences reflect the differential effect of biogeochemical processes important in both the water column and benthos (organic carbon production/respiration) vs. processes mainly occurring on the benthos (calcium carbonate production/dissolution). Locally at Hog Reef, the relative magnitude of the diel variability of organic carbon production/respiration was 1.4–4.6 times larger than that of calcium carbonate production/dissolution, though estimates of net organic carbon production and calcification based on inshore-offshore chemical gradients revealed net heterotrophy (−118 ± 51 mmol m –2 day –1 ) and net calcification (150 ± 37 mmol CaCO 3 m –2 day –1 ). These results reflect the important roles of time and space in assessing reef biogeochemical processes. The spatial variability in carbonate chemistry parameters was larger laterally than vertically and was generally observed in conjunction with depth gradients, but varied between sampling events, depending on time of day and modifications due to current flow. 
    more » « less
  6. null (Ed.)
    The hydrodynamics within small boreal lakes have rarely been studied, yet knowing whether turbulence at the air-water interface and in the water column scales with metrics developed elsewhere is essential for computing metabolism and fluxes of climate-forcing trace gases. We instrumented a humic, 4.7 ha, boreal lake with 2 meteorological stations, 3 thermistor arrays, an infra-red (IR) camera to quantify surface divergence, obtained turbulence as dissipation rate of turbulent kinetic energy (ε) using an acoustic Doppler velocimeter and a temperature-gradient microstructure profiler, and conducted chamber measurements for short periods to obtain fluxes and gas transfer velocities (k). Near-surface ε varied from 10-8 m2 s-3 to 10-6 m2 s-3 for the 0 to 4 m s-1 winds and followed predictions from Monin-Obukhov similarity theory. The coefficient of eddy diffusivity in the mixed layer was up to 10-3 m2 s-1 on the windiest afternoons, an order of magnitude less other afternoons, and near molecular at deeper depths. The upper thermocline upwelled when Lake numbers (LN) dropped below 4 facilitating vertical and horizontal exchange. k computed from a surface renewal model using ε agreed with values from chambers and surface divergence and increased linearly with wind speed. Diurnal thermoclines formed on sunny days when winds were < 3 m s-1, a condition that can lead to elevated near-surface ε and k. Results extend scaling approaches developed in the laboratory and for larger water bodies, illustrate turbulence and k are greater than expected in small wind-sheltered lakes, and provide new equations to quantify fluxes. 
    more » « less
  7. Abstract A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species and ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems. 
    more » « less